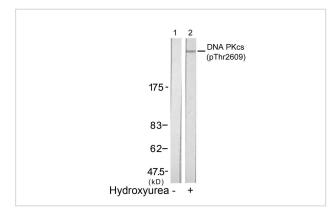
DNA PKcs(Phospho-Thr2609) Antibody

Catalog No: #11167

Package Size: #11167-1 50ul #11167-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description	
Product Name	DNA PKcs(Phospho-Thr2609) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB
Species Reactivity	Hu
Specificity	The antibody detects endogenous level of DNA PKcs only when phosphorylated at threonine 2609.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of threonine 2609 (V-E-T(p)-Q-A) derived from Human
	DNA-PK.
Target Name	DNA PKcs
Modification	Phospho
Other Names	DNPK1; PRKD; PRKDC; XRCC7; P460
Accession No.	Swiss-Prot: P78527NCBI Protein: NP_001075109.1
Uniprot	P78527
GenelD	5591;
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

Application Details

Predicted MW: 450kd

Western blotting: 1:500~1:1000

Images

Western blot analysis of extracts from K562 cells untreated(lane 1) or treated with hydroxyurea(lane 2) using DNA PKcs(Phospho-Thr2609) antibody #11167.

Background

The PRKDC gene encodes the catalytic subunit of a nuclear DNA-dependent serine/threonine protein kinase (DNA-PK). The second component is the autoimmune antigen Ku (MIM 152690), which is encoded by the G22P1 gene on chromosome 22q. On its own, the catalytic subunit of DNA-PK is inactive and relies on the G22P1 component to direct it to the DNA and trigger its kinase activity; PRKDC must be bound to DNA to express its catalytic properties

Chan DW, et al. (2002) Genes Dev. Sep 15; 16(18): 2333-2338 Ding Q, et al. (2003) Mol Cell Biol. Aug; 23(16): 5836-5848 Douglas P, et al. (2002) Biochem J. Nov 15; 368(Pt 1): 243-251

Note: This product is for in vitro research use only