EphA10 Antibody Catalog No: #24927 Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com | Description | Support: tech@signalwayantibody.com | |-----------------------|--| | Product Name | EphA10 Antibody | | Host Species | Rabbit | | Clonality | Polyclonal | | Purification | Affinity chromatography purified via peptide column | | Applications | ELISA WB | | Species Reactivity | Hu Ms Rt | | Immunogen Type | Peptide | | Immunogen Description | Raised against a 14 amino acid peptide of near the amino terminus of human EphA10. | | Target Name | EphA10 | | Other Names | EphA10, EPH receptor A10, Ephrin type-A receptor 10, FLJ16103 | | Accession No. | Swiss-Prot:Q5JZY3Gene ID:284656 | | Uniprot | Q5JZY3 | | GeneID | 284656; | | Concentration | 1mg/ml | | Formulation | Supplied in PBS containing 0.02% sodium azide. | | Storage | Can be stored at -20°C, stable for one year. As with all antibodies care should be taken to avoid repeated | | | freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. | ## **Images** Western blot analysis of EphA10 in 293 cell lysate with EphA10 antibody at (A) 1 ug/mL and (B) 2 ug/mL. ## Background Eph receptors, the largest subfamily of receptor tyrosine kinases (RTKs), and their ephrin ligands are important mediators of cell-cell communication regulating cell attachment, shape, and mobility of neuronal and endothelial cells in central nervous system function and in development. Eph receptors can be divided into two subgroups: EphA and EphB. In mammals, the EphA class consists of eight members (EphA 1-7 and 10) that in general bind to ephrin-A members linked to the cell membrane through a glycosylphosphatidylinositol linkage. The EphB class consists of six members (EphB 1-6) that in general bind ephrin-B members that transverse the cell membrane. The Ephrin / EPH signaling pathway networks with the WNT signaling pathway during embryogenesis, tissue regeneration, and carcinogenesis. Recent studies show that Eph/EFN might be relevant in normal B-cell biology and could represent new potential prognostic markers and therapeutic targets for CLL. Note: This product is for in vitro research use only