Product Datasheet

VEGFR2(Phospho-Tyr1214) Antibody

Catalog No: #11085

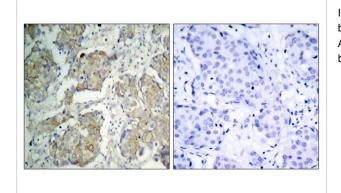
Package Size: #11085-1 50ul #11085-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

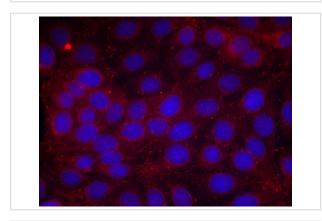
$\overline{}$		4.4	
	escri	ntin	n
$\boldsymbol{\nu}$	COUL	Puo	ш

2000		
Product Name	VEGFR2(Phospho-Tyr1214) Antibody	
Host Species	Rabbit	
Clonality	Polyclonal	
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.	
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho	
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.	
Applications	WB IHC IF	
Species Reactivity	Hu Ms Rt	
Specificity	The antibody detects endogenous level of VEGFR2 only when phosphorylated at tyrosine 1214.	
Immunogen Type	Peptide-KLH	
Immunogen Description	Peptide sequence around phosphorylation site of tyrosine 1214 (F-H-Y(p)-D-N) derived from Human VEGFR2.	
Conjugates	Unconjugated	
Target Name	VEGFR2	
Modification	Phospho	
Other Names	FLK1; KDR; VGFR2; VGR2; kinase insert domain receptor	
Accession No.	Swiss-Prot: P35968NCBI Protein: NP_002244.1	
Calculated MW	152kDa	
Concentration	1.0mg/ml	
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%	
	sodium azide and 50% glycerol.	
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.	

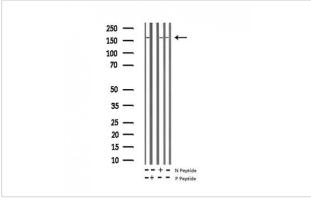
Application Details


Predicted MW: 230kd

Western blotting: 1:500~1:1000


Immunohistochemistry: 1:50~1:100

Immunofluorescence: 1:100~1:200


Images

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using VEGFR2(Phospho-Tyr1214) Antibody #11085(left) or the same antibody preincubated with blocking peptide(right).

Immunofluorescence staining of methanol-fixed MCF cells using VEGFR2(Phospho-Tyr1214) Antibody #11085.

Western blot analysis of extracts from mouse kidney/rat kidney, using Phospho-VEGFR2 (Tyr1214) Antibody.
-/+ means absence or presence of N peptide(non-phospho peptide) and P peptide(phospho peptide).
Please contact us if you have any other questions.

Background

Receptor for VEGF or VEGFC. Has a tyrosine-protein kinase activity. The VEGF-kinase ligand/receptor signaling system plays a key role in vascular development and regulation of vascular permeability. In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions

Lamalice L, et al. (2004). Oncogene.23(2): 434-445.

Takahashi T, et al. (2001). EMBO J .20(11): 2768-2778.

Published Papers

el at., CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis. In Blood on 2012 Sep 13 by Tianxia Jiang, Jie Zhuang, et al..PMID: 22718841, , (2012)

PMID:22718841

el at., Impaired tumor angiogenesis and VEGF-induced pathway in endothelial CD146 knockout mice.In Protein Cell on 2014 Jun by Qiqun Zeng , Zhenzhen Wu et al..PMID: 24756564, , (2014)

PMID:24756564

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish as only and is not interface for account name of animals.