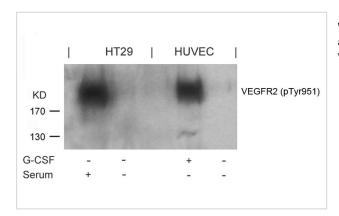
Product Datasheet

VEGFR2(Phospho-Tyr951) Antibody

Catalog No: #11086

Package Size: #11086-1 50ul #11086-2 100ul

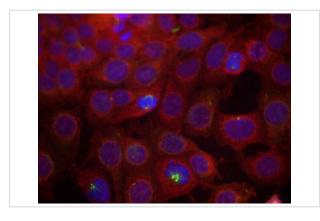
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	VEGFR2(Phospho-Tyr951) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB IHC IF
Species Reactivity	Hu
Specificity	The antibody detects endogenous level of VEGFR2 only when phosphorylated at tyrosine 951.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of tyrosine 951 (K-D-Y(p)-V-G) derived from Human VEGFR2.
Conjugates	Unconjugated
Target Name	VEGFR2
Modification	Phospho
Other Names	FLK1; KDR; VGFR2; VGR2; kinase insert domain receptor
Accession No.	Swiss-Prot: P35968NCBI Protein: NP_002244.1
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

Application Details

Predicted MW: 230kd
Western blotting: 1:500~1:1000
Immunohistochemistry: 1:50~1:100
Immunofluorescence: 1:100~1:200


Images

Western blot analysis of extracts from G-CSF-treated HUVEC and serum-treated HT29 cells using VEGFR2(Phospho-Tyr951) Antibody #11086.

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using VEGFR2(Phospho-Tyr951) Antibody #11086(left) or the same antibody preincubated with blocking peptide(right).

Immunofluorescence staining of methanol-fixed MCF7 cells using VEGFR2(Phospho-Tyr951) Antibody #11086.

Background

Receptor for VEGF or VEGFC. Has a tyrosine-protein kinase activity. The VEGF-kinase ligand/receptor signaling system plays a key role in vascular development and regulation of vascular permeability. In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions

Zeng H, et al. (2001) J Biol Chem. 276(35): 32714-32719. Dougher M, et al. (1999) Oncogene. 18(8): 1619-1627.

Published Papers

el at., CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. In Cell Res on 2015 Mar by Wei Chen, Yan Liu et al.. PMID:25656845, , (2015)

PMID:25656845

el at., Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. In Neurochem Int on 2014 Sep by Chikako Inada, Yimin Niu,et al..PMID:24911952, , (2014)

PMID:24911952

el at., Evidence for pro-angiogenic functions of VEGF-Ax. In Cell on 2016 Sep 22 by Hong Xin, Cuiling Zhong, et al..PMID:27662093, , (2016) PMID:27662093

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.